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REVIEW ARTICLE 

Point-contact spectroscopy 
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Max-Planck-Institut fur Festkorperforschung, Hochfeld-Magnetlabor, 25 Avenue des 
Martyrs, 166 X, F-38042 Grenoble Ctdex, France 

Received 18 March 1988, in final form 10 October 1988 

Abstract. Micro-contacts between metals at low temperatures reveal non-linear structures 
in the current-voltage characteristics. These deviations from Ohm’s law allow an energy- 
resolved spectroscopy of the interaction of the conduction electrons with elementary exci- 
tations (e.g. phonons) in ametal. Toexplain themethod, theimportant parameters (electron 
mean free path versus contact dimension) in point-contact spectroscopy will be discussed 
together with examples of spectroscopic information obtained in various systems. Local 
temperature gradients in the contact region offer the possibility to study thermo-electric 
phenomena in small constrictions, such as thermal voltages in non-homogeneous contacts 
and quenching of the phonon-drag term in the thermo-power in homogeneous contacts. 
Besides these aspects of the point-contact technique, recent experiments will be shown with 
applications of point contacts other than just spectroscopy: magneto-resistance of a point 
contact, high-frequency rectification with a point contact as the non-linear element, electron 
focusing using a double point-contact set-up, electrical noise in constrictions and generation 
of phonons by means of point contacts. 

1. Introduction 

Point-contact spectroscopy nowadays has become a well established technique in the 
study of the interaction mechanisms of electrons with all kinds of elementary excitations 
in metals. Small constrictions between two metals show deviations from Ohm’s law. The 
non-linearity is a measure of the inelastic scattering of the conduction electrons, where 
the applied voltage defines the energy scale for the interaction process. Those non- 
linearities in the current-voltage characteristics were discovered by Yanson, who exam- 
ined the I-V characteristics of shorted metal-insulator-metal (MIM) tunnel junctions 
(Yanson 1974). In the second derivative d2V/dZ2 of the voltage V with respect to the 
current I ,  he found structures which turned out to coincide with the Eliashberg function 
a2F for the electron-phonon interaction. This Yanson experiment was the start of a 
whole series of experiments in which mainly the electron-phonon interaction was studied 
in all kinds of materials. But also other scattering mechanisms of electrons were observed 
in point-contact experiments, like e.g. electron-magnetic impurity interaction and elec- 
tron-magnon interaction. 

Although point-contact experiments with superconductors show interesting fea- 
tures, we will restrict ourselves to point-contact experiments on normal (N-N) contacts. 
In this review paper we will not give a detailed description of the complete point-contact 
theory but only give the main results. For a complete theory on point contacts in the 
ballistic regime we shall refer to Kulik et a1 (1977) and Jansen et aZ(1980). For a theory 
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on point contacts in the dirty limit we refer to Kulik and Yanson (1978). We will also not 
give a complete survey on all the possible materials that have been studied during the 
last few years. For reviews on this see Yanson (1983) and Yanson and Shklyarevskii 
(1986). Here we will discuss the possibilities of the technique and a number of new 
interesting experiments that have been performed during the last few years. 

In the first part of this review attention is focused on the spectroscopic side of the 
point-contact technique. Here the aim is to obtain an energy-resolved determination of 
the inverse scattering time l/t of electrons with elementary excitations in the metal. The 
important criteria in a point-contact experiment will be explained and illustrated with 
typical examples of spectroscopic applications, which also show the limitations of this 
technique. The understanding of point-contact spectroscopy has initiated experiments 
dealing with aspects other than just spectroscopy, exploiting the small dimension of the 
contact. A considerable number of experiments of this kind have been performed 
during the last few years, for instance those dealing with thermal conductivity, with the 
quenching of phonon drag in the thermo-power of point contacts, with thermo-electric 
effects, those on double point contacts and on point contacts in magnetic fields. 

2. Characterisation of a point contact 

There are three methods of fabricating a point contact between two metals. The first 
point contacts that existed were a short circuit in a MIM tunnel junction. The method was 
extended by the so-called pressure-type contacts in which a sharp whisker is pressed on 
a flat surface. With this technique it was easier to control the diameter of the contact, 
which is an important parameter in the experiments. These spear-anvil contacts made 
the point-contact technique accessible for the study of a large number of materials. The 
newest method is just pressing together two sharp edges of two bulk pieces of metal. 
Besides the advantage of the pressure-type contacts, now even single-crystal contacts 
could be made. 

The two typical lengths for the characterisation of the contact problem are the 
electron mean free path 1 and the radius a of the constriction. Actually the mean free 
path involves an elastic mean free path 1, and an inelastic one, l , (&).  The inelastic mean 
free path depends on the electron energy E = eV with respect to the Fermi level. 
Comparing these typical lengths with each other, three regimes are possible. 

The first regime is the ballistic regime in which the electron mean free path 1 is much 
larger than the contact dimension a. In this regime an applied voltage will accelerate the 
electrons within the distance of a mean free path. Thus the electrons will then pass 
through the contact ballistically, gaining an energy eV, where Vis the applied voltage 
over the contact. The problem can be treated analogously to the problem of the flow of 
a dilute gas through a small hole (Knudsen 1934). Sharvin realised the peculiar transport 
of current through such a contact in the ballistic regime and calculated the resistance 
(Sharvin 1965). He  found a resistance Rs = 4p1/3na2, where p is the resistivity of the 
material under study. This expression for the Sharvin resistance Rs is independent of 
the electron mean free path. 

The opposite case of this ballistic regime is the dirty, thermal, or Maxwell regime, 
where the mean free path of the electrons is much smaller than the contact radius a. For 
this regime the Poisson equation can be solved using the proper boundary conditions, 
leading to a resistance RM = p/2a, already calculated by Maxwell (1904). In contrast 
with the ballistic regime, where the electrons lose their energy over a rather large distance 
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(U 1 ( b )  i c l  
Figure 1. Distribution of the electronic energy at the centre of the contact for an applied 
voltage V over a point contact in (a )  ballistic, (b )  diffusive and (c) thermal regimes. 

from the constriction, in this regime they lose their energy in the contact area itself. 
Therefore this Joule heating leads to an increase of temperature at the centre of the 
contact. 

When one is not in one of these two limits, one could easily expect some interpolation 
of the two limiting resistances (Wexler 1966): 

Here K = I/a is the Knudsen number and r( K )  is a slowly varying function of the order 
of unity. 

The third possible regime is the so-called diffusive regime. This is the regime where 
the elastic mean free path I ,  of the electrons is small compared with the contact dimension 
but where the diffusion length A = (lile)1’2 for inelastic scattering is still bigger than the 
contact dimension. In this case still no heating occurs in the contact area. 

Figure 1 shows the difference in the electron distribution functions at the centre of 
the contact for the three regimes. In figure l(a) the deformed Fermi spheres are depicted 
for the ballistic regime. Since there is ballistic flow of electrons from both sides of the 
contact, the Fermi sphere consists of two half-spheres with a difference in radius equal 
to the applied energy eV.  The picture for the diffuse regime (figure l(b)) differs from 
the ‘ballistic picture’ because the elastic scattering redistributes the electrons iso- 
tropically over the Fermi sphere, but still in an energy shell with a width given by the 
applied voltage (dotted area). Since there is still more electrons in the left half-sphere 
than in the right one, there is a net flow of electrons from the right to the left. Figure l ( c )  
just shows the shifted Fermi sphere which is valid for a point contact in the thermal 
regime, as is normal for the uniform transport of electrons in a conductor. Because of 
strong inelastic scattering the shift in energy space will be smaller than the applied 
voltage. In the next section we will show how these three different micro-contact regimes 
manifest themselves in the experiments and how the observed non-linearities can be 
explained theoretically. 

3. Non-linearities observed with point contacts 

3.1. Ballistic regime 

In the ballistic point-contact regime, direct energy-resolved information is obtained 
about the inelastic scattering of the electrons in the contact region. Figure 2 shows a 
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pronounced example of the information obtained with point contacts. This figure shows 
the current-voltage characteristic and its derivatives of a Cu-Cu point contact in the 
ballistic regime, measured at liquid-helium temperatures. The broken curve in figure 
2(c)  represents the phonon density of states F(E)  obtained with neutron scattering experi- 
ments. There is a clear resemblance between this curve and the measured second deriva- 
tive d2V/d 12, For an interpretation of this result it is necessary to solve the Boltzmann 
equation for the point-contact problem. This can be done iteratively. The zeroth-order 
solution describes the ballistic injection of electrons without any scattering and yields 
the expression for the Sharvin resistance. The first-order solution describes the inelastic 
scattering of the injected electrons, back through the orifice. This first-order correction 
fi') to the total current leads to a correction of the order of a l l ( & )  in the resistance, 
analogously to the second term in equation (1). This correction f i l l  to the total current is 
given by 

Here N(0)  is the density of states at the Fermi level, Qefr is a kind of effective volume 
in which the inelastic scattering of electrons that contribute to f i l l  takes place, and 
S(E)  is the spectral function for the concerned interaction. This spectral function S ( E )  
consists of an integration over all initial and final electron states lk) and lk') of the 
scattering matrix elements lgkkel and an efficiency function ~ ( k ,  k ' ) :  

The efficiency function ~ ( k ,  k ' )  is the normalised common volume of two cylinders 
through the boundary of the orifice, one parallel to k of the incoming electron and 
the other parallel to k' of the inelastic scattered electron. Retaining only the angular 
dependence in the scattering event, the efficiency can be written as q ( 0 )  = (1 - 
0/tan 0)/2 (van Gelder 1980), analogously to the function (1 - cos 0 )  in the electrical 
transport problem. The effective volume in the ballistic regime is given by Reff = 
8a3/3. 

The expression for the differential conductivity d I/d V is now given by 

d I  1 1 
- 3e a N(0)  - 

d V  Rs t(eV) ' 
----2 2 3 (4) 

This inverse scattering time l/z(eV) of an electron with energy eV above the Fermi 
level is related to the spectral function S ( E )  via 

& = x IoeV S ( E )  d E .  

The second derivative d 21/d V2 of the current with respect to the voltage is directly 
proportional to the spectral function S ( E )  since 

and thus a direct measurement of the spectral function S(eV) is possible. For the case 
of electron-phonon interaction as in figure 2, the spectral function S ( E )  is the well 



Point-contact spectroscopy 3161 

0 20 40 

Voltage I m V )  
Figure 2. Measured (a)  current-voltage charac- 
teristic, ( b )  differential resistance dV/dZ and (c) 
second derivative d2V/dp for a Cu-Cu point 
contact with resistance Ro = 3.3 B at tem- 
perature 1.5K. The broken curve in (c) rep- 
resents the phonon density of states F(E)  
obtained from neutron scattering experiments. 

Cu-1.4% Ni  

0 20 40 

Voltage ImV) 
Figure 3. Measured point-contact spectra d 'V/ 
d12 for point contacts consisting of pure Cu and 
some CuNi alloys, showing the transition from 
the ballistic to the diffusive regime. By increasing 
the Ni concentration the Knudsen ratio l,/a goes 
from 29 to 0.07. The spectra were measured at 
T = 4.2 K. (After Lysykh et a1 (1?80).) 

known Eliashberg function a2F(&) with, as a slight modification, the efficiency function 
q(k ,  k') mentioned above. This method of obtaining phonon spectra has been used 
extensively during the last few years. For many (normal) metals it was the first method 
to give the detailed energy dependence of the electron-phonon interaction function 
a2F(&). For a complete review on the investigation of the electron-phonon interaction 
by means of point contacts, we refer to Yanson (1983). 

In measurements on the point-contact electron-phonon interaction function 
a2Fp(e), often a considerable background is found (Jansen et al 1980). One expects 
the function a2Fp to be zero above the Debye energy, which owing to equation (6) 
should lead to d2Z/dV2 = 0 for these energies. The fact that this does not occur is 
generally understood to be due to the presence of non-equilibrium phonons in the 
system. This leads to an additional scattering of the electrons with these non-equi- 
librium phonons and therefore to a background signal which is not included in the 
theory. The background signal is a smooth signal which is zero at zero energy, increases 
smoothly at the phonon energies and saturates above the maximum phonon energy. 
This background signal B(eV) is best described by the integral 

el/ 

B(eV) = K 1 [a2Fp(e)/e] d e  
0 

where K is some constant. Thus the measured signal is commonly believed to be 
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Figure 4. Schematic representation of the effec- 
tive volume Q,,, of a point contact in ( a )  the 
ballistic regime and ( b )  the diffusion regime. ( b l  

a2Fp(&)  
7 = constant x a 2 F p ( e V )  + K 1 ~ dE) 
d 2 I  
d V  i O E  

(7)  

This assumption gives us the possibility to correct for the background and to determine 
the point-contact electron-phonon interaction function a2FP(&). 

3.2. Diffusive regime 

In the diffusive point-contact regime it is still possible to obtain direct energy-resolved 
information about the inelastic scattering of the electrons as in the ballistic regime. 
Figure 3 shows very nicely the transition from a point contact in the ballistic regime 
to a point contact in the diffusive regime (Lysykh et a1 1980). The lowest curve 
represents the phonon spectrum of a pure Cu-Cu point contact. Adding Ni to the 
sample (other curves) reduces the elastic mean free path of the electrons in the material 
under study and brings the point contacts into the diffusive regime. The most striking 
features of these curves are the reduction of the signal, the broadening of the spectra 
and a shift of the phonon peaks to higher energies. For a theoretical understanding 
we still can use equations (2)-(6). The spectral function S ( E ) ,  however, now contains 
another efficiency function q(k, k’), in which the demands on momentum conservation 
are less stringent because of the elastic scattering (Kulik and Yanson 1978). This 
explains the different shape of the measured spectral function in this diffusive regime 
compared with the one measured in the ballistic regime. The reduction of the signal 
can be explained with the effective volume Reff. In the diffusive regime this effective 
volume is given by Reif = na21,/4, where 1, is the elastic mean free path. The effective 
volumes are sketched schematically in figure 4. Figure 4(a) shows the effective volume 
for a point contact in the ballistic regime except for a pre-factor. If an inelastic 
scattering process takes place outside this volume, the chance of the electron flowing 
back through the orifice becomes very small because of the small solid angle Q(r)  the 
orifice subtends from that point. Therefore inelastic scattering processes outside this 
volume hardly contribute to the back-flow current and therefore their contribution 
to the observed non-linearities and the spectral function S ( E )  is also very small. The 
reduced effective volume for the diffusive case is depicted in figure 4(b). As already 
mentioned only those electrons which pass the orifice and then are scattered back 
inelastically through the orifice (or those electrons which would have passed the 
contact without the inelastic scattering) contribute to the spectral function S ( E ) .  
Because of the diffusive electron transport with elastic scattering the efficiency of the 
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Voltage i m V 1  
Figure 5.  Measured d’V/dZ’ spectrum of a Ni-Ni point contact with resistance Ro = 6.5 R 
at temperature T = 1.5 K. revealing the phonon structure at low voltages (expanded curve) 
and the ferromagnetic transition at high voltages. 

back-flow processes after an inelastic scattering process will be reduced by a factor 
./le and will be most effective in a volume at a distance le from the contact. 

3.3. Thermal regime 

If the micro-contact diameter d becomes larger than both the elastic and the inelastic 
mean free paths of the electrons, then the micro-contact is in the thermal regime. In 
this regime almost all the energy is dissipated in the contact area, which leads to an 
increase in temperature at the orifice itself. It can be shown that this maximum 
temperature T,,, at the centre of the contact for this Maxwell regime is given by 
(Holme 1967) 

Ti, ,  = Tgath  + v2/4L (8) 
where Tbath is the bath temperature and L is the Lorenz number. Since by approxi- 
mation one can say that the centre of the point contact gives the largest contribution to 
the Maxwell resistance RM = p/2a, one actually measures the temperature-dependent 
resistivity p( T,,,) in measuring the voltage-dependent point-contact resistance R,( V ) .  

Relation ( 8 )  can be observed in the measured d2V/dZ2 spectrum of a Ni-Ni point 
contact as shown in figure 5 .  At low voltages this spectrum exhibits the phonon 
structure, as can be seen in the expanded inset in this figure. From this we can conclude 
that for these low voltages the contact is in the ballistic or in the diffusive regime. At  
higher voltages, however, a huge non-linearity shows up which can be understood in 
terms of the ferromagnetic transition of Ni. At high voltages the electron mean free 
path becomes so small that the contact is in the thermal regime. Using equation (8) 
we can calculate the temperature of the contact at the voltage at which the transition 
is observed. This temperature agrees very well with the Curie temperature of Ni. 

An approximation which is less rough than the proportionality RM(V) CC p( TmaX) 
mentioned above is the model of spherical spreading out. In this model both the 
equipotential and the isothermal surfaces are assumed to be hemispheres around 
the contact. Using this model one can calculate the correlation between the Z-V 
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characteristic and the temperature-dependent resistivity of the metal. One then finds 
the relation (Verkin et a1 1980) 

where T,,, is again the temperature at the centre of the contact, given by equation 
(8). This relation can be used to calculate the current-voltage characteristics of point 
contacts in the thermal regime, using the temperature-dependent resistivity of the 
studied material. 

4. The relation between point-contact spectroscopy and tunnelling 

For measuring the function a2F another powerful method exists using superconducting 
tunnelling (McMillan and Rowell 1965). With superconducting tunnel junctions the 
normalised density of states N(E)/N(O) in the superconductor can be obtained directly 
from the differential conductivity (dI/d V ) ,  in the superconducting state divided by 
(dZ/dV), in the normal state. From the measured many-particle density of states, 
McMillan and Rowell calculated a2F using an iterative computer calculation. This 
method can be utilised for strong-coupling superconducting metals. It is however also 
possible to see the electron-phonon interaction in tunnelling experiments between 
normal metals because of the inelastic scattering of tunnelling electrons which opens 
extra channels for the electrons to tunnel through the barrier. Thus in tunnelling 
experiments with normal metals the inelastic scattering of electrons leads to an increase 
of the total current. This is the main difference with point-contact spectroscopy, 
where according to equation (2) the inelastic scattering of electrons gives a negative 
contribution to the total current (back-flow). As a typical example of the relation 
between tunnelling and point-contact spectroscopy, we want to mention the experi- 
ments on metals with paramagnetic impurities dissolved in them. The experimental 
results are shown in figure 6. As we will explain in the next section, point-contact 
experiments on noble metals (e.g. Au or Cu) with paramagnetic impurities (e.g. Mn) 
show an anomalous structure around zero bias voltage. The observed maximum in 
the point-contact resistance can be explained in terms of the Kondo problem. Applying 
an external magnetic field, this maximum is reduced because spin-flip processes are 
forbidden for voltages V < gpBB/e,  leading to a structure with a double peak. The 
decrease of point-contact resistance at zero bias, when applying a magnetic field, can 
clearly be seen in figure 6(a). Figure 6(b) shows the results of measurements on a Ta- 
I-A1 tunnel junction (Shen and Rowell 1968). A comparison of both figures clearly 
shows the opposite behaviour between tunnelling and point-contact spectroscopy. 
While in the point-contact case the differential resistance d V/dI at V = 0 is decreased 
on applying an external field, in the tunnel experiments it is increased as explained 
above. 

5. Point-contact spectroscopy applied to other scattering mechanisms 

As we have already mentioned in the preceding sections the point-contact method has 
been applied most successfully and most intensively to the scattering of electrons with 
phonons. However, experiments have also been performed on other inelastic scattering 
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Figure 6. Measured differential resistance dV/ 
d l f o r  (a)  a Au-0.1 at.% Mn point contact and 
( b )  a Ta-I-AI tunnel junction (after Shen and 
Rowell 1968) at different magnetic fields, show- 
ing the opposite behaviour in voltage and magn- 
etic-field dependence between point-contact 
spectroscopy and tunnelling. 

mechanisms. In this section we will discuss briefly a number of point-contact experi- 
ments, dealing with scattering mechanisms other than the electron-phonon interaction. 

5.1. Electron-magnon scattering 

The inelastic scattering of electrons with magnons has been observed most clearly in 
point-contact experiments by Akimenko et a1 (1982). They carried out experiments 
on gadolinium, terbium and holmium. For these materials the total of electron- 
magnon and electron-phonon interaction functions was measured. The most pro- 
nounced magnon spectra they found in their experiments on gadolinium. Here the 
electron-magnon interaction turns out to be much stronger than the electron-phonon 
interaction since no structure was found at the expected phonon energies. At  low 
energies, theory predicts the electron-magnon interaction function S ( E )  to be pro- 
portional to the applied voltage (Kulik and Shekhter 1980). This is indeed found in 
the experiments on Gd. The experiments with Tb and Gd show the electron-magnon 
interaction in the spectra superimposed on the electron-phonon structure. 

5.2. Crystal-field levels 

In point-contact experiments in PrNi,, the level energies of the Pr3+ ion in the crystal 
electric field of this PrNi, were determined directly (Akimenko et a1 1984a). The 
measured spectra show a number of singularities on a rather large background. 
Observed maxima in the d 2V/dZ2 curves were clearly identified as the Pr3+ transition 
from the ground state into the excited states. This could be made plausible by 
comparing the point-contact data with the results of neutron scattering experiments. 
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Applying an external magnetic field shifts the transitions towards somewhat lower 
energies and induces additional structure due to a transition that was forbidden in 
zero field. 

Crystal-field excitations were also found in point-contact experiments by Fran- 
kowski and Wachter (1982). In their experiments on TmSe they found a maximum in 
the d 2V/dZ2 characteristic at 5 mV which was ascribed to these excitations. 

5.3. Scattering with paramagnetic impurities 

The differential resistance of point contacts consisting of noble metals with very dilute 
paramagnetic impurities dissolved in them shows a maximum at zero bias voltage 
(Jansen et all980, Duif et a1 1987). In these Kondo systems the s-d exchange interaction 
between the conduction electrons and the local moments yields a logarithmic energy 
dependence of the inverse scattering time l/ t(eV).  As can easily be seen from equation 
(4), the measured change in differential resistance AR is directly proportional to this 
inverse scattering time l / t ( ev ) .  

The logarithmic divergence of the energy-dependent scattering rate was measured 
in the voltage dependence of the point-contact resistance. When an external magnetic 
field B is applied, the observed zero-bias maximum splits up. This splitting is visible 
in figure 6. As already mentioned, the decrease in differential resistance and the 
occurrence of a double peak structure can be explained with the absence of spin-flip 
scattering at low enough voltages. This type of scattering requires an energy A = 
gp.,B, which is not available at low bias voltages. At voltages V = -+A/e, this spin-flip 
scattering starts contributing again to the differential resistance, yielding a maximum 
in the contact resistance near these voltages. Using the Hamiltonian for the s-d 
interaction between conduction electrons and local moments, it is possible to calculate 
the differential resistance of the point contacts of these systems (d’Ambrumeni1 and 
White 1982). From a comparison between measured and calculated spectra the Zeeman 
energy A can be determined as a function of field. Extrapolating this energy A to zero 
external field still leaves in many cases some non-zero value. This can be explained 
by the presence of internal fields which occur in the somewhat more concentrated 
samples (spin glasses). These internal fields arise from the indirect exchange interaction 
(RKKY) between the impurity spins themselves. Figure 7 shows how these internal 
fields manifest themselves in the measured point-contact spectra. Figure 7(a) shows 
the measured differential resistance of three AuMn point contacts without a magnetic 
field. In the more concentrated samples a splitting occurs due to the internal fields 
which become more pronounced when the impurity concentration is increased. Figure 
7(b) gives the calculzted differential resistance for these three samples. A comparison 
between both plots shows that the theory gives a good description of the experiment. 

5.4. Mixed valencies and heariy fermions 

In the past few years a considerable number of point-contact experiments have been 
performed on various valence-fluctuation and heavy-fermion systems. In general, very 
large non-linearities are found in the current-voltage characteristics, leading to rather 
large changes in the measured differential resistance dV/dZ. In the experiments on 
valence-fluctuation compounds, both minima and maxima were observed in the 
resistance around zero bias voltage. For instance, in experiments on YbCuAl and 
YbCuzSi2 a minimum was observed in dV/dI  (Bussian et a1 1982). The temperature- 
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Figure 7. (a) Measured differential resistance d V / d I  for three AuMn point contacts with 
different Mn concentrations and ( b )  calculated differential resistance for these contacts. 

dependent resistivity p( T )  of these materials also exhibits a minimum at zero tem- 
perature. In experiments on SmB6 and TmSe a maximum was observed in dV/dZ at 
zero bias voltage (Frankowski and Wachter 1982). However, here the resistivity also 
has a maximum at zero temperature. Some different interpretations exist of the 
observed phenomena. Bussian et af (1982) explained their results by the energy- 
dependent inter-configurational scattering of conduction electrons. Frankowski and 
Wachter (1982) explained their results on TmSe and SmB, by the existence of a hybrid- 
isation gap in the electron density of states in these materials. In point-contact experi- 
ments on heavy-fermion compounds a minimum is found in the differential resistance at 
zero bias voltage (see e.g. Kunii 1987, Paulus and Voss 1985, Moser et aZ1985, 1986). 
This behaviour has been explained by the narrow maximum in the electron density of 
states around the Fermi level of these materials (Moser et af 1985). 

Analogously to a tunnelling experiment it is often stated for a point-contact exper- 
iment in heavy-fermion systems that the differential conductance dZ/d Vis proportional 
to the electron density of states N(eV) at an energy eVabove the Fermi level. Hence one 
could directly probe with a point contact the strong resonance in the density of states 
around the Fermi level in heavy-fermion systems. However, a simple analysis shows that 
the energy-dependent density of states does not enter the expression for the resistance 
of a point contact in the clean limit. To calculate the current in the ballistic limit one has 
to sum the electron velocity over all possible k-states. The sum over k-states results in an 
energy-dependent density of states, which is cancelled by the electron velocity. Via the 
same reasoning as for a tunnelling experiment between normal metals (Harrison 1961), 
the resistance of a point contact does not contain the energy-dependent density of states 
in its voltage dependence. For superconductors, however, it is possible to determine the 
normalised density of states of the superconductor in a tunnelling experiment. 

A different approach to the interpretation of the point-contact experiments on these 
valence-fluctuation and heavy-fermion systems is in terms of the heating model (§ 3.3). 
It is believed more and more that for the compounds discussed a ballistic point-contact 
model is not applicable (see e.g. Naidyuk et a1 1985a). 
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Figure 8. Comparison between the voltage- 
dependent differential resistance d V/dZ( V )  
of a UPt3-UPt3 point contact, measured at 
4 . 2 K  (full curve) with its temperature- 
dependent differential resistance d V/dZ(T), 
measured at V = 0 (full circles). Equation 
(8) has been used for the matching between 
voltage and temperature scales. 

Measurements on UPt3 (Lysykh eta1 1988b) show that there is a strong resemblance 
between the voltage-dependent differential point-contact resistance and the temp- 
erature-dependent bulk resistivity of this heavy-fermion system. However, quanti- 
tatively the relative change in this temperature-dependent bulk resistivity is a few times 
larger than the relative change in the voltage-dependent differential resistance. A better 
quantitative agreement is found by comparing the voltage-dependent resistance at low 
temperatures with the temperature-dependent resistance at zero voltage. For a normal 
metal like Cu with point contacts in the clean limit a distinct difference is seen in these 
two dependences of the point-contact resistance (Jansen et a1 1988). Still quantitatively 
the temperature-dependent resistance cannot be explained fully from the temperature- 
dependent resistivity in terms of the heating model (R( T )  = p (  T)/2a) .  An explanation 
could be a deviation of the resistivity on the local scale of the point contact compared 
with the bulk value. Figure 8 shows the comparison between the measured voltage 
dependence of the differential resistance of a UPt3-UPt, point contact at constant bath 
temperature (full curve) with the measured temperature dependence of d V/dZ at zero 
bias (full circles). For the scaling between temperature and voltage, equation (8) has 
been used with experimental values for the temperature-dependent Lorenz number of 
UPt,. There is a good agreement between the functional dependence of (dV/dl),,,=, 
and (dV/dl)T,v=o. 

6. Temperature effects in point contacts 

In this section we will focus on the thermal aspects of point-contact spectroscopy. It is 
evident that, in all experiments on point contacts, temperature plays a significant role in 
the interpretation of the results. As we already mentionedin § 3.3, temperature is essen- 
tial in the interpretation of the observed current-voltage characteristics of dirty contacts, 
where Joule heating takes place close to the centre of the contact. For clean contacts the 
bath temperature determines the resolution of the measured spectra. In equations (2)- 
(6), for simplicity an infinitesimal temperature (T+ 0) was assumed. At finite tem- 
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peratures, the measured d *Z/d V 2  spectra will be smeared with a bell-shaped function 
with half-width 5.4kBT (van Gelder et a1 1980). It is clear that at helium temperatures 
this thermal smearing in general does not have a great influence on the spectra since the 
resolution then is about 1 meV while the spectra in general are much broader than this. 
Only at higher temperatures does the effect become noticeable. 

Recently a number of experiments have been performed in which the transport 
properties of point contacts were studied with an applied temperature gradient in the 
contact area. Concerning the heat flux through a contact it was shown that for contacts 
in the clean limit the quotient of the electrical and thermal resistance follows the Wie- 
demann-Franz law as for bulk material. 

In the presence of electrical and thermal gradients, the influence of thermo-electric 
effects has been observed in point contacts. In a point contact the phonon-drag con- 
tribution to the thermo-power is quenched owing to the small dimensions of the contact. 
The thermo-power of a point contact therefore shows a difference from that of bulk 
material. 

Point contacts between different materials often show asymmetries in the current- 
voltage characteristics, which are not expected on the basis of the transport properties 
of a point contact discussed in § 3. These asymmetries could be due to the Seebeck 
effect for the case of dirty contacts where the local heating causes intrinsic temperature 
gradients in the contact. 

The measured temperature of the two banks forming a point contact was found to be 
asymmetric as a function of applied bias voltage. The voltage dependence of these 
asymmetries reveals phonon structures as can also be measured with normal point- 
contact techniques. 

6.1. Thermal conductivity of metallic point contacts 

When a temperature gradient is applied to a point contact, then the transport equations 
for phonons and electrons again have to be solved using extra boundary conditions 
which involve the temperature at both sides of the point contact with an applied 
temperature gradient. In contrast to the thermal conductivity of point contacts between 
non-conducting systems, in the case of contacts between good conductors, the phonon 
contribution to the heat flow can be neglected with respect to the electronic con- 
tribution. This of course does not mean that the phonon system does not play any 
role. The scattering of electrons with phonons will influence the current and the 
heat flow. This, however, will be an effect of second order. In the zeroth-order 
approximation, comparable with the ballistic injection of electrons without scattering, 
the heat flux Q( T )  can be calculated easily. Measurements of both the thermal and 
the electrical resistance as a function of temperature enable a determination of the 
temperature dependence of the Lorenz number L( T ) ,  assuming the Wiedemann- 
Franz law to be valid. 

For the electronic distribution (figure l ( a ) )  in zeroth-order approximation, i.e. the 
pure ballistic case without scattering, the entropy flux Is is given by 

where a quadratic dispersion law is assumed (Bogachek et aZ1985b). Here the function 
g( E )  is given by 

in which fO(&) is the normal Fermi distribution function. In equation (10) p l  and p2 
=fo(E) ln(fo(4) +fo(-E) ln(fo(-4) 
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Figure 9. Measured heat flux through different Au-Au point contacts as a function of 
contact resistance. The temperature at both sides of the contacts was T ,  = 4.2 K and T2 = 
10 K. The full line represents the theoretical dependence, calculated with equation (12). 
(After Shklyarevskii et a1 (1986b).) 

are the chemical potentials on both sides of the contact at temperatures T I  and T ,  
respectively. From this one can write as a simple result for the entropy flux 

ZF) = - (em/h3)(na2/12)(T1 + T2)V* + (n2k&/3e2) (T2  - Tl) /Rel .  (11) 
Here V *  = V+ (,ul - p2)/e and Re] is the electrical resistance of the point contact, 
given by the Sharvin resistance Rs. Since the first term of this equation is much smaller 
than the second term, one can write for the heat flux Q = Z 5 T  

Q = (n2kg/3e2)  TAT/Rel. (12) 
When T2 S=- T I  this gives a quadratic temperature dependence of the heat flow. From 
equation (12) we now find an expression for the ratio between the electrical resistance 
Rel and the thermal resistance Rth = AT/Q:  

Rel/Rth = (n2k&/3e2)  T = L O T  (13) 
where Lo is the Lorenz number. Thus also in the case of point contacts, the Wiede- 
mann-Franz law is valid. 

Measurements of the heat flow through metallic constrictions were performed by 
Shklyarevskii et a1 (1986b). They measured the heat flux through Au-Au point contacts 
at temperatures between 4.2 and 140 K. Figure 9 shows the measured heat flux Q as 
a function of point-contact resistance for different contacts. The full line in this figure 
is calculated with equation (12). A clear agreement is found between theory and 
experiment for contact resistances below approximately 0.01 Q. For contacts with a 
larger resistance there is a strong discrepancy between theory and experiment. It can 
be assumed that in these cases the phonon flow through electrically non-conducting 
regions of the contact is large compared with the heat flow by electrons through the 
contact. For low contact resistances the measured heat flux is indeed quadratic in 
temperature up to 20-30 K, according to equation (12) for large AT = T - 4.2 K. At 
higher temperatures the exponent in this dependence is slightly smaller and for very 
low resistances (i.e. large contact diameter) it even becomes linear, which is in 
agreement with the constant thermal conductivity for bulk metals at sufficiently high 
temperatures. 



Point-contact spectroscopy 3171 

Equation (13) provides a possibility of measuring the temperature dependence of 
the Lorenz number L. In the cited experimental work, the temperature dependences 
of L was determined. The behaviour found is similar to that for bulk metal. 

6.2. Thermo-electric effects in metallic point contacts 

Recently a number of experiments have been performed which studied the influence 
of the presence of a temperature gradient in the contact region on the electrical 
properties of both metallic and semiconducting point contacts. In this section we will 
discuss the case of metallic contacts, and in the next section look at semiconducting 
ones. Temperature gradients in the contact region can be obtained by heating one 
side of the contact, but also by Joule heating by a current through the contact. 

In the case of a homogeneous contact with a temperature difference A T  = T2 - T 1  
across it, the electrical current for a ballistic contact is given by 

emu2 
I(') = s j o  . s [ f $ ( . s - e V / 2 - p 2 )  - f $ l ( ~ + e V / 2 - p ~ ) ] d ~  (14) 

where f,$ is the Fermi distribution at temperature T ,  and p l  and p2 are the temperature- 
dependent chemical potentials. Usually, i.e. when no temperature gradient is applied, 
this equation leads to the Sharvin resistance. With an applied temperature gradient it 
is possible to calculate from equation (14) at zero current density the diffusion term 
Sic  in the thermo-power of the point contact, which is then given by 

Here Ap = p2 - p l  is the difference in chemical potential, and F1 and F2 are given by 

Here a free-electron model with a spherical Fermi surface was assumed. The diffusion 
term SFc is linear in temperature. For a bulk material a similar expression is found in 
a simple model with a constant mean free path (Barnard 1972). We want to emphasise 
the fact that this is only the electron-diffusion term in the thermo-power. In a metal 
the total thermo-power is given by S = Se + S P h  where SPh is the phonon-drag term in 
the thermo-power, which is due to the transport of electrons by the non-equilibrium 
phonon system. The temperature dependence of the phonon-drag thermo-power SPh 
of bulk metals shows a maximum at about 0.2& where OD is the Debye temperature. 
This is because this phonon-drag component in a simple model is proportional to the 
lattice specific heat with a reduction factor a = + tp,J for the efficiency of 
energy transport from the phonon system with respect to the electrons (tp,e is the 
phonon-electron scattering time and tp,x the scattering time of phonons with other 
scatterers, e.g. phonons). At low temperatures the phonons interact primarily with 
electrons and a = 1, but at high temperatures a = 0. As a result the thermo-power of 
bulk material shows a maximum superimposed on a linear term from the diffusional 
contribution of the electrons. Note that for the electronic thermo-power Se of bulk 
metals, the same expression is found as equation (15) for the point-contact case. In 
the point-contact case, however, at low temperatures, the scattering of phonons (tp,J 
will be determined by the contact dimension so that a will be small and the phonon drag 
will be suppressed. Therefore the phonon-drag term of the bulk material will be larger 
than that of a point contact. 
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Figure 10. Measured thermo-power S = 
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Figure 11. Thermo-electric voltage V,,, divided 
by the temperature difference AT,  measured 
over Cu-Si-Cu chains with a constriction in the 
Si, as a function of contact resistance for different 
applied temperature gradients WT over the con- 
tact as indicated in the figure. One side of the 
contacts was always kept at a constant tem- 
perature T I  = 300 K. (after Trzcinski et a1 
(1986).) 

Thermo-powers in homogeneous metallic point contacts were measured by Shkly- 
arevskii et a1 (1986a). In their experiment, the Seebeck voltage was measured between 
the isothermal terminals of a chain, made of one metal and containing a point contact, 
over which a temperature difference A T  = T - 4.2 K was applied by heating one side of 
the contact. The measurements were performed without any electrical current. The 
measured Seebeck voltage in this case is equal to the difference between the thermal 
voltage over the bulk part and the point-contact part such that 

Vtot(T) = Vbulk  - vpc = [Sbuk(T') - sp~(Tr)] d T r .  (16) i'l 
Here Sbulk and S,, are the bulk and the point-contact thermo-powers. An example is 
given in figure 10 for a Au point contact. We see that the measured thermo-power 
S = Sbu lk  - S,, resembles (even in absolute value) the bulk thermo-power which is also 
plotted in this figure. In view of the comparison discussed before, between the thermo- 
power of bulk material and a point contact, one expects to measure mainly the term 

in the set-up with the metallicconstriction. At low temperatures there is a difference 
in the measured thermo-power for different point contacts measured in the same set-up. 
Probably these effects are due to the Kondo effect, because especially the thermo- 
power is very sensitive to small amounts of paramagnetic impurities. Because of a local 
distribution of paramagnetic impurities the measured thermo-power changes from con- 
tact to contact with respect to the bulk thermo-power. In measurements on Ag these 
effects were absent and the bulk thermo-power was directly obtained in the point-contact 
arrangement. At high temperatures the measured thermo-power becomes constant. 
This constant background is not yet explained. 
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Another case in which thermo-electric effects come into play is that of a current 
flowing through a non-homogeneous point contact in the thermal limit. When heating 
occurs in the contact region, then the Seebeck effect will cause an extra voltage over the 
contact due to the different thermo-powers of the two materials that form the contact. 
Besides this effect the Peltier effect will cause an extra heating or cooling of the contact, 
depending on the direction of the current flow. A third effect, the Thomson effect, gives 
an extra heating in the contact area due to the presence of both a temperature gradient 
and an electric field. All these three effects together influence the voltage over the 
contact and consequently asymmetries in the current-voltage characteristics and their 
derivatives are observed. At low temperatures (i.e. low voltage over the dirty contact) 
the Seebeck effect is dominant. 

These thermal voltages and asymmetries of the current-voltage characteristics in 
non-homogeneous point contacts were studied by Naidyuk et aZ(1985b). The most pro- 
nounced example that they found of the studied phenomenon was the shift in voltage at 
which the ferromagnetic transition shows up in Cu-Ni point contacts. As we already 
showed in figure 5 ,  point contacts consisting of Ni show this transition around 190 mV, 
which corresponds in view of the heating model (equation (8)) with the Curie tem- 
perature of Ni. In experiments on Cu-Ni the same transition occurs, but now however 
it also depends a little on the sign of the applied bias. The difference AVbetween positive 
and negative bias is approximately 10 mV. This asymmetry can be explained by the 
Seebeck effect. Analogous to equation (16) one can easily show that the observed dif- 
ference AV(V) must be equal to 

AV(V) = 2jTmax [S,(T) - SB(T)]dT (17) 
Tbath 

in which Tbath is the bath temperature, T,,, is the maximum temperature at the centre of 
the contact given by equation (8), and SA( T )  and S,( T )  are the temperature-dependent 
thermo-powers of materials A and B between which the point contact is made. Cal- 
culation of this integral, using the temperature-dependent thermo-powers of Ni and Cu 
as known from literature, gives AV = 22 mV, which is of the same order as the measured 
value. This only gives a crude estimate of the voltage difference AV since at these high 
temperatures also the Peltier and Thomson effects have to be incorporated. 

Finally measurements were performed on Cu-mFe and Cu-C2Mn point contacts. 
Here already an asymmetry is observed for low energies (eV k B e D )  in the structure 
related to the Kondo effect. These contacts are believed to be in an intermediate state 
between diffusion and ballistic regimes. From the observed asymmetry it can be con- 
cluded that even in this case a non-uniform temperature distribution is present in the 
contact area. It is possible that this temperature distribution has to be seen as the non- 
equilibrium distributions of electrons and/or phonons on both sides of the contacts. 

6.3. Thermo-electric effects in semiconductor point contacts 

Up to the present, electrical measurements on semiconductor point contacts have 
only been performed in short-circuited metal-oxide-semiconductor (MOS) structures 
(Pepper 1980a, b, c), showing a rich structure in the spectra due to phonons, and in 
In-InGaAs microchannel contacts, where an oscillatory behaviour is found due to 
LO phonons (Pong-Fei Lu et al 1985). A problem in pressure-type contacts with 
semiconductors is the very large contact resistance which occurs in most cases. Most 
probably surface states play a dominant role in this kind of experiment, leading to 
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irreproducible results. In metal-semiconductor point contacts a Schottky barrier will 
be formed, thus leading to large contact resistances at low voltages and large non- 
linearities. 

With a Cu-semiconductor-Cu chain with a constriction in the semiconductor part, 
Trzcinski et al (1986) measured the thermo-electric voltage of Si point contacts as a 
function of contact resistance. No electrical current was applied but one side of the 
contact was heated. Thus this experiment is the semiconductor equivalent of the 
experiment by Shklyarevskii et a1 (1968a) on metals, as discussed in D 6.2, but here 
the experiments were performed at room temperature. Also here the thermo-power 
can be thought to exist of an electronic part and a phonon-drag part. Figure 11 shows 
the measured thermal voltage over the contacts, measured as a function of contact 
resistance for different applied temperature gradients. At  a certain resistance, slightly 
dependent on the applied temperature gradient, a sharp drop in thermal voltage takes 
place within a narrow range of R. This sudden drop is ascribed to the quenching of 
phonon drag when the phonon mean free path becomes comparable with the contact 
dimension. The observed temperature dependence can be explained by the presence 
of more short-wavelength phonons at higher temperatures for which the scattering is 
less affected by a size reduction and therefore the effect occurs at smaller contact 
dimensions. A universal scaling was found, combining the effects of temperature and 
sample dimension. 

6.4. Thermal phonon spectroscopy in Cu point contacts 

In § 6.1 we already discussed heat transport through metallic contacts due to an applied 
voltage and a temperature difference between the contact members. However, the 
discussed transport is only the zeroth-order approximation, comparable with the 
zeroth-order solution in the electrical case, i.e. the ballistic injection of electrons 
without any scattering. In both cases no electron-phonon scattering effects can be 
expected to show up in the observed characteristics. In the second-order solution, 
however, these effects have to be considered. Bogachek et a1 (1985b) predicted a 
voltage-dependent first-order heat flux Q('), from which the second derivative is given 
by 

d2Q(l) -- - -$ne3a3AN(0)Va2Fp(T,  eV/h) 
d V 2  

where A is a factor that is a measure of the regime in which the contact is. For instance, 
in the ballistic regime this constant A is equal to unity. In the thermal regime, however, 
it is reduced to A = 81,/3na 1. This means, as we have already seen in the electric 
spectra, i.e. d2V/dZ2, that the signals are considerably reduced when the contact is 
not (any more) in the ballistic state. In equation (18) N(0)  is the electron density of 
states at the Fermi surface and the temperature dependence of the function a2Fp has 
to be taken into account. We must remark that this equation (18) is only valid for the 
case in which there is no temperature difference between both parts of the contact, 
i.e. T I  = T,. For the case where the parts of the contact are not strictly kept at the 
same temperature, a temperature difference will occur which will also contain structure 
because of the electron-phonon interaction. 

Experiments on this subject were reported by Reiffers et al(l986). They measured 
very accurately the temperature of both the two contact members as a function of the 
applied voltage. Their contacts were made between two pieces of bulk material to which 
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Figure 13. Calculated contact resistance R(a) ,  
normalised with the Sharvin resistance R,, plot- 
ted as a function of k$, showing the quantum- 
mechanical deviations from this Sharvin resist- 
ance for contacts with very small diameters. 

thermometers were attached. In the measurements of temperature versus applied bias 
voltage, an asymmetry was found with respect to V = 0. In figure 12 their results are 
depicted. Figure 12(a) gives the well known electron-phonon interaction point-contact 
spectrum of copper, whereas figure 12(b) gives the measured temperature difference 
between positive and negative bias as was measured in these experiments. There is a 
striking resemblance between the measured second derivative d 2V/dZ2 and the 
measured temperature difference AT in this experiment. The occurrence of maxima at 
the same energies at which the phonon peaks in d 2V/dZ2 occur implies that the electron- 
phonon interaction in this experiment also plays an essential role in the shape of the 
measured asymmetry, as was more or less predicted by the theory of Bogachek et al  
(1985b). 

Besides the broad maxima at the energies of the transverse and longitudinal phonons, 
additional structure with maxima and minima is found in these experiments, which 
probably occur due to different mechanisms of scattering. The positions of these maxima 
and minima are in reasonably good agreement with the positions of the extrema in noise 
spectra of copper point contacts (Akimenko et a1 1984b). 

7. Special experiments on and with point contacts 

We will now discuss a number of experiments that have been performed recently and 
are different from the traditional type of experiment, in which interaction mechanisms 
of the conduction electrons with elementary excitations in the metal are studied. 
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The influence of a magnetic field for instance on bulk material is fairly well 
understood but a point contact shows some unexpected and interesting features when 
it is placed in a magnetic field. Measurements on point contacts in high magnetic fields 
display a quadratic magneto-resistance on which are superimposed Shubnikov-de 
Haas like oscillations. 

Metallic point contacts can also be brought into a high-frequency (HF) elec- 
tromagnetic field. Already for some time they have been used as HF rectifiers, mixers 
and harmonic generators. The origin of the rectifying mechanism can be explained in 
terms of the discussed models of the non-linear current-voltage characteristics of point 
contacts. Also here one has to distinguish between point contacts in the ballistic and 
those in the thermal regime. The results of measurements in both these regimes are 
different. This provides a new method to distinguish between the two regimes. When 
the applied laser frequency is chosen large enough, photon-assisted tunnelling effects 
come into play. 

With double point contacts a number of experiments have been performed in 
which the electrons were injected by the first contact and with help of a transverse 
magnetic field were focused onto the second contact. This set-up gives the possibility 
to study the Fermi surface of the metal and even the energy dependence of the 
electron-phonon interaction for electrons in a specific orbit on the Fermi sphere. 

Noise measurements on Cu-Cu show that point contacts exhibit a l / f  noise 
spectrum. As a function of applied bias voltage the spectral density of this noise shows 
a quadratic dependence. However, on this quadratic dependence a structure with 
minima and maxima is superimposed. The positions of these extrema coincide with 
different phonon processes in the examined material. 

Finally experiments are described in which the phonon spectrum generated with a 
point contact was examined. In the ballistic regime one expects a phonon distribution 
with a cut-off energy equal to the applied energy eV.  In an experiment in which Bf 
impurities in Si were used as a phonon detector, this distribution could not be 
confirmed, probably due to a premature thermalisation of the phonon system. 

1.1. Point contacts in high magnetic fields 

Magnetic fields have mostly been applied in point-contact experiments as a tool to 
change some material parameters of the metal under study. For instance, magnetic 
fields have been used to quench superconductivity in order to enable measurements 
of the electron-phonon interaction for point contacts in the normal state. Another 
example is the influence of magnetic fields on magnetic excitations to be studied with 
the point-contact technique. However, recently also a number of experiments have 
been performed in which the direct influence was studied of a magnetic field on the 
point-contact resistance. The most striking phenomena that occur in these experiments 
are the observed magneto-resistance and an oscillating magnetic-field dependence of 
the contact resistance. 

Owing to the change in the electron trajectories, the magnetic field affects the 
resistivity of the material under study. For a sufficiently large transverse magneto- 
resistance, the resistance of a contact has an additional term given by the square 
resistance p / d  of the sample (thickness d )  on which the point contact is put. Hence 
the point-contact resistance changes as the bulk magneto-resistivity. The superimposed 
oscillatory behaviour of point contacts in magnetic fields can be ascribed to the Landau 
quantisation of the electron orbits. 
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7.1 . I .  Magneto-resistance in metallic point contacts. We will first focus on the observed 
classical magneto-resistance in metallic point contacts. As we already mentioned in 
0 2 ,  in a simple picture the point-contact resistance can be thought to exist 9f a ballistic 
part, the Sharvin resistance, and a diffusive part, the Maxwell resistance (equation 
(1)). For a clean contact the Sharvin resistance will dominate and the Maxwell 
resistance will hardly be noticeable. However, the resistivity of the material under 
study changes considerably on applying a magnetic field. The resistivity-dependent 
component of the contact resistance becomes more important, and can even give the 
main contribution to the observed magneto-resistance. 

The resistivity of a metal in general depends strongly on the direction and size of 
the magnetic field. We must however distinguish here compensated metals, i.e. where 
the number of holes and electrons is equal, and uncompensated metals. In the case 
of compensated metals the transverse magneto-resistivity pt is according to the LAK 
theory (Lifshitz et a1 1956) given by 

Pt = (1 + B2>Po. (19) 
Here po is the zero-field resistivity and /3 is a parameter proportional to the magnetic 
field which in a simple picture equals /3 = u c z ,  with the cyclotron frequency U, = eB/ 
m * ,  and the electron relaxation time z. The longitudinal resistivity p1 is not affected 
by the magnetic field. In high magnetic fields, values for /3 of lo3 can easily be obtained 
for pure materials and the resistivity will be very anisotropic in a magnetic field. As a 
consequence the point-contact resistance will have an important component originating 
from the resistivity perpendicular to the magnetic field. For a point contact placed on 
a sample of thickness d in a magnetic field perpendicular to this sample, the magneto- 
resistance component resembles the square resistance pt/d and the modified expression 
for the Maxwell resistance can be written as 

R = (1 + P 2 ) ( p / 2 n d >  ln(D/4a). (20) 
Here D is the sample diameter, where the sample is assumed to be circular with the 
current and voltage contacts on its border, and a is the radius of the point contact. From 
equation (20) we see that we can also expect a quadratic magnetic-field dependence of 
the contact resistance as in bulk materials. With the semi-classical theory no effect of 
a magnetic field is expected on the Sharvin resistance, which is independent of the 
electronic scattering time. 

In an experiment Swartjes and co-workers measured this effect on bismuth 
(Swartjes et al 1988a). They measured both the bulk and the point-contact magneto- 
resistance of this material. A comparison of both measurements confirmed the validity 
of equation (20) for the resistance of a point contact in a magnetic field. 

In the case of uncompensated materials, the magneto-resistance is usually very 
small. However, in the Corbino geometry with a central contact on a circular sample, 
and the other contact on the total contour, again a quadratic magnetic field dependence 
is found. The origin for this magneto-resistance lies in the circular symmetry of 
the Corbino geometry, which hinders the build-up of a Hall voltage. Usually in 
uncompensated metals, the Hall voltage compensates the deflection of electrons in a 
magnetic field, and the magneto-resistance is small. A point contact can be regarded 
as a Corbino geometry and will thus exhibit a considerable magnetic-field dependence. 
In this case a similar expression to equation (20) can be given for the point-contact 
magneto-resistance. In a point-contact experiment with A1 this effect was observed 
(Swartjes et a1 1988a). 
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7.1.2. Magneto-oscillations in metallic point contacts. It is commonly known that a 
number of physical quantities of metals show oscillations when measured as a function 
of magnetic field. The origin of these oscillations lies in a redistribution of the electrons 
when the Landau tubes cross the Fermi surface for increasing magnetic field. Well 
known examples of this oscillatory behaviour are the de Haas-van Alphen effect in 
the magnetic susceptibility and the Shubnikov-de Haas effect in the electrical res- 
istivity. The latter manifests itself in the modified expression for the Maxwell resistance 
since according to equation (20) this is proportional to the resistivity. However, also 
the Sharvin term in the point-contact resistance can show oscillations in the magnetic- 
field dependence because of diffraction of the electronic wavefunctions at the orifice. 

When the typical length on which an electron is localised becomes large compared 
with the contact dimension, a semi-classical calculation as is used to derive the Sharvin 
resistance is not applicable any more, but a quantum-mechanical approach is necessary. 
In the case of no applied magnetic field, this length is the de Broglie wavelength A = 
2n/kF which will in most cases be small compared with the contact dimension. When 
a magnetic field is applied, this length becomes the magnetic length A = (2h/eB)’i2 
which is comparable with the contact dimension for fields of the order of 5 T. 

A quantum-mechanical approach with the Wigner formalism for the problem was 
used by Bogachek et a1 (1985a) for the case A < a .  They found oscillations in the 
point-contact resistance proportional to i r3I2,  where z = p / h o ,  is the number of filled 
Landau levels below the chemical potential p. In another approach (Swartjes et a1 
1988b) the problem is considered as a diffraction problem for the case A > a or A > a. 
The wavefunctions of the incoming electrons will lose their directional information 
after passing the contact. As a consequence of this, in the derivation of the Sharvin 
resistance, which is a summation over all the perpendicular components of the 
electron velocity in k-space, i.e. Jd3ku,, the term dk, U, has to be replaced by 
E,, d k,,, uZ,,,Ay(j, j ’ ) ,  where the summation goes over all possible plane-wave directions 
of the outgoing electron. The function Ay(j,j’) describes the coupling between k, and 
U ,  and depends on the ratio y between contact diameter and electron wavelength. A 
calculation using this approach, for the case that no magnetic field is applied, yields 
(Swartjes et a1 1988b) 

which in the semi-classical limit k,a + 1 reduces to the Sharvin resistance Rs. In this 
equation S is the contact area and v(E) is the overlap of the contact with itself when 
shifted over the vector g. This E is any vector lying in the contact area. Equation 
(21) describes the quantum-mechanical deviation from the Sharvin resistance R, for 
contacts with a dimension comparable with the inter-atomic distance. In figure 13 the 
resistance calculated with equation (21), normalised with the Sharvin resistance, is 
plotted as a function of kFa for circular contacts with radius a. Note that for large k,a 
the point-contact resistance equals the Sharvin resistance and hence the problem can 
be treated semi-classically. 

When a magnetic field is applied, the summation in the calculation of the Sharvin 
resistance now goes over wavefunctions of electrons in a magnetic field, instead of 
over plane waves, and the index j ’  now goes over all Landau levels. A calculation 
(Swartjes et a1 1988b) yields two separate oscillations in the point-contact resistance, 
one with relative amplitude 2-3 /2  and one with z-l!’. Including the diffraction at the 
orifice of an electron wavefunction in a magnetic field, a considerable enhancement 
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Figure 14. Measured differential resistance d V/d Iof an A1-Cu point contact with resistance 
R o =  1.3 Q at temperature T =  1.85K, as a function of magnetic field, showing the 
magneto-oscillations of point contacts in magnetic fields. 

is expected of the oscillatory quantum effects in the magneto-resistance of a point 
contact (z-l12 dependence compared with z - ~ / * ) .  Figure 14 gives an example of these 
quantum-mechanical oscillations of a point contact in a magnetic field. The resistance 
of an AI-Cu point contact shows an oscillatory behaviour, periodic in 1/B, which can 
be ascribed to Landau tubes in the third zone of the Fermi surface of Al. 

7.2. Point contacts in high-frequency electromagnetic fields 

Already for a long time point-contact diodes have been used as rectifiers, mixers and 
harmonic generation elements for high-frequency purposes, i.e. for frequencies up to 
the near-visible. The point contacts that are used for these cases consist of a whisker, 
sharpened to a small point and put on a piece of bulk material. The whisker serves as 
an antenna through which a high-frequency current is induced inside the contact. 
Because of the non-linear current-voltage characteristic of such a point contact, the 
element can be used for purposes as mentioned above. 

When a point contact is brought into a high-frequency electromagnetic field, the 
radiation field acts as a high-frequency current source, because the point-contact 
resistance is usually smaller than the vacuum impedance. Chopping the radiation at a 
low frequency, it can easily be shown that the measured voltage at this chopper 
frequency is proportional to the second derivative d2V/dZ2 as measured with the 
traditional techniques, using low-frequency current modulation. Thus with this tech- 
nique it is for instance also possible to measure the a2F function, however now using 
a modulation with a much larger frequency. This effect was first observed by van der 
Heijden et a1 (1980), who measured this rectification by a Cu-Cu point contact and 
found a laser-detected signal which was completely in agreement with the measured 
second derivative d 2V/dZ2, as measured with low-frequency modulation. 

In order to measure a signal proportional to the second derivative d2V/d12, the 
processes that determine the current-voltage characteristics have to be fast compared 
with the applied HF modulation frequency. In the experiments by van der Heijden et 
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Figure 15. Measured d *V/dZ* spectrum (A),  rec- 
tification signals at five different HF modulation 
frequencies (B-F) (after Balkashin er a1 1982) 
and the calculated rectification signal for the 
thermal regime (G) as a function of applied 
voltage for a Ni-Ni point contact with a resist- 
ance Ro= 3.3 Q at room temperature. The 
curves have been shifted with respect to each 
other. The applied radiation frequencies were 
(B) 0.3, (C) 1.0, (D) 2.0, (E) 12 and (F) 
16.6 GHz. The theoretical curve was calculated 
with equation (22). 

Figure 16. Rectification signals measured with a 
radiation frequency of w = 525 GHz for a Cu- 
Cu point contact with resistance R,  = 4.9 Q at 
temperature T = 1.2 K (upper full curve) and 
with radiation frequency of w = 2523 GHz for a 
Cu-Cu point contact with resistance Ro = 42.1 S2 
at temperature T =  1.2K (lower full curve). In 
this latter curve the photon-assisted tunnelling 
effect gives a considerable broadening of the 
spectrum. The broken curve was calculated with 
equation (23). 

a1 (1980) the characteristic time t for these processes is the electron-phonon scattering 
time Z&ph which is typically 10-i4-10-i3 s for Cu at helium temperatures. Therefore 
the criterion wradt  < 1 for the laser-detected signal to follow the non-linear DC current- 
voltage characteristics is fulfilled in these experiments. 

The criterion w r a d t  < 1 will not hold any longer in the situation where heating is the 
main effect that determines the current-voltage characteristics. Then the characteristic 
time constant ?&er& for the non-linearity is given by the thermal relaxation of the 
contact. It is given by the quotient of the total heat capacity of the contact and the 
conduction of heat out of the contact area, i.e. t thermal -  C/A = cd3/( i ld2/d)  = cd2//2,  
where d is the contact diameter, c is the specific heat and il is the thermal conductivity 
of the metal under study. For a contact with a typical dimension of d - 10 nm one 
finds Z t h e m a l -  W 9 s ;  hence the signals will change in this regime at frequencies in the 
gigahertz regime. An example of this is the experiment by Balkashin et a1 (1982), who 
measured the rectification signal of a Ni-Ni point contact at room temperature for 
different HF modulation frequencies. Figure 15 gives their results. Curve A gives the 
measured second derivative d 2V/dZ2 obtained with the standard technique at 483 Hz, 
showing the ferromagnetic transition due to heating of the contact area (see also figure 
5) .  Curves B-F are the rectification signals measured with increasing frequency. For 
frequencies below 300 MHz the observed signal resembles the d2V/dZ2 spectrum. At 
higher frequencies deviations occur from this behaviour. One can conclude that the 
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timescale imposed by the 300 MHz radiation is of the same order of magnitude as the 
thermal relaxation time of the contact. At higher radiation frequencies the temperature 
cannot follow the modulated current and a constant rise in temperature due to the HF 
current modulation will occur. It is easily shown that the signal detected in the 
experiment is given by (Lysykh et a1 1988a) 

where R, is the static resistance of the point contact and i is the amplitude of the 
induced HF current. This theoretical rectification signal is also plotted in figure 15 
(curve G). There is a strong resemblance between this curve and the signal measured 
at the highest frequency (16.6 GHz). Complete agreement is not found since probably 
the criterion w,,dx & 1 is not yet totally fulfilled at this frequency. 

Also for the electron-phonon interaction in clean contacts it is possible that the 
measured rectification signal does not resemble the second derivative d2V/dZ2. A 
considerable broadening of the spectra occurs when the changes in the Z-V charac- 
teristics take place on a voltage scale comparable with or larger than hwrad/e of the 
applied radiation. This broadening, only occurring at higher radiation frequencies, 
can be described with the photon-assisted tunnelling (PAT) theory (Tien and Gordon 
1963). The PAT effect can be considered as the quantum-mechanical analogue of 
classical rectification and is mostly observed in tunnelling experiments with super- 
conductors. In figure 16 the broadening at high radiation frequencies is shown. The 
upper full curve represents the rectification signal for a Cu point contact measured at 
a laser frequency of 525 GHz (i.e. 2.2 meV). The shape of the signal resembles the 
d2V/dZ2 spectrum of Cu (see e.g. figure 2). The lower full curve gives the rectification 
signal of a Cu point contact, measured at a laser frequency of 2523 GHz (i.e. 10.4 meV). 
Here the broadened signal is fitted with the broken curve, which is calculated using 
the PAT expression for the DC current at voltage V when radiation is applied: 

vd,, = (d /Z i2 /8)  R,(dR,/d V )  (22) 

n= + m  

z D C ( v )  = J i (a)  1 ( v  + nfiwrad/e) (23) 
,,=-2 

where Z(V) is the DC current in the absence of radiation, J,, is the nth-order Bessel 
function and LY =eVAC/hwrad in which VAC is the induced HF modulation voltage over 
the contact. Photon-assisted tunnelling is mostly seen in experiments on non-linear 
elements in which a superconductor is involved. In the experiment by van der Heijden 
et a1 (1984, figure 16) it was observed for the first time in a normal metal element. 

7.3. Transverse electron focusing with double point contacts 

Electrons can be focused by a magnetic field in a metal from one point contact to 
another, revealing details of the trajectories on the Fermi surface. In the experiments 
the electrons are injected into a single crystal with a point contact (the emitter) and 
after focusing are detected with a second point contact (the collector). The first 
experiments of this type were performed by Sharvin and Fisher (1965). They placed 
emitter and collector at opposite sides of the crystal with the focusing magnetic field 
parallel to the axis between the two contacts. The method of focusing electrons 
between two contacts was improved by Tsoi (1974) by using a transverse magnetic 
field instead of a longitudinal one. The emitter and collector were now placed on the 
same side of the crystal (see inset of figure 17). This opened up the possibility to study 
the Fermi-surface orbits and specular reflections of the conduction electrons with the 
crystal surface. With this method of transverse electron focusing it turned out to be 
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Figure 17. Measured collector voltage on a Ag(001) surface in a TEF experiment as a 
function of applied magnetic field. The a-peaks indicate focusing of electrons on belly 
orbits, the P-peaks of electrons on four-cornered-rosette orbits. The y-peak detects the 
focusing of holes, originating from Andreev reflections of electrons at the Ag-Pb interface. 
The inset shows the experimental set-up with an example of a trajectory of an Andreev- 
reflected quasi-particle from the emitter to the collector in the presence of a magnetic 
field. 

possible to observe directly the Andreev reflection of electrons on a normal metal- 
superconductor interface. 

Recently the method has been used to study the energy dependence of the electron- 
phonon interaction. Compared with the traditional point-contact experiments on 
this interaction, an advantage is that in the double-point-contact experiments the 
interaction can be studied on a specific orbit of the Fermi surface. 

The technique of transverse electron focusing (TEF) can be understood easily. As 
we already mentioned, electrons are injected into the metal by the emitter point 
contact. A homogeneous magnetic field, parallel to the crystal surface, forces these 
electrons onto paths in real space that are just the orbits in k-space but rotated over 
90" and scaled with a factor h/eB. The electrons follow paths over the Fermi surface 
perpendicular to the field direction and return to the surface at a certain distance from 
the point of injection, depending on the strength of the applied magnetic field. The 
electrons are injected into all directions, but focusing takes place at a distance 2hkF/ 
eB from the emitter. 

For the case of specular reflection on the surface, focusing also occurs at multiples 
of this distance from the emitter. Figure 17 shows the observed collector voltage on a 
Ag(0 0 1) surface as a function of the magnetic field. For the chosen crystal orientation 
with respect to the magnetic field, focusing of the electrons on belly orbits (peaks 
ao, a l )  and on four-cornered-rosette orbits (peaks Po,  PI) can be observed. The peak 
a. (bo) corresponds to the direct focusing and a1 (PI) after one reflection. From the 
relative intensity of successive peaks a study can be made of the internal reflectivity 
of the Ag surface (Benistant et a1 1986). The electrons on the rosette orbits (Po, PI) 
are seen at negative fields because the effective mass of the electrons on these orbits 
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is negative, resulting in an opposite rotation of the electrons in a magnetic field 
compared to the belly orbits. 

Transverse electron focusing has been applied to investigate the Andreev reflection 
of electrons at the interface between a normal metal and a superconductor (Bozhko 
et a1 1982, Benistant et a1 1983). An Andreev reflection describes the process of an 
electron passing from a normal to a superconducting metal. The traversing electron 
condenses into the superconducting state by forming a Cooper pair with another 
electron, withdrawn from the normal metal. Because of mass, charge and momentum 
conservation, a quasi-particle with opposite mass, group velocity and charge, i.e. a 
hole, will come back from the interface into the normal metal. A direct observation 
of the Andreev reflection can be made by evaporating a superconducting film on the 
Ag surface opposite to the surface where the emitter and collector are placed. In the 
inset of figure 17 an example of an Andreev-reflected quasi-particle is given in the 
presence of a magnetic field. In the same figure the y-peak detects the focusing of the 
holes originating from an Andreev reflection. The amplitude of the y-peak is opposite 
to the other peaks because of the opposite charge of the quasi-particles. Andreev 
reflection was also observed in an experiment with a single point contact on a thin Ag 
crystal with a Pb film evaporated at the opposite side (Benistant et a1 1985). This single 
point contact served both as emitter and as collector in the experiment. Because of 
the retro-reflection of the quasi-particles at the surface between superconductor and 
normal metal, the Andreev-reflected quasi-particles return exactly at the place of 
ballistic injection. The voltage-dependent resistance of the single contact shows a 
minimum for voltages below the superconducting gap, where Andreev reflections are 
possible. With this experiment the energy dependence of the Andreev reflection has 
been investigated by measuring the voltage-dependent contact resistance. 

A more recent experiment in which TEF between two point contacts was used is 
that of van Son et a1 (1987) in which the electron-phonon interaction is studied. In 
this study the magnetic field was tuned at a value Bo for electron focusing to occur. 
At this field the decrease of the focusing peak was measured with increasing energy 
of the emitted electrons. The focusing-peak height P will be a function of the emitter 
voltage via 

P(eV)  = P(0)  exp[-t/z(ev)] (24) 
in which z (eV)  is the energy-dependent scattering time of the electrons and t = mn/ 
eBo is the time during which the electrons travel from the emitter to the collector. For 
T = 0 the electron-phonon scattering time is given by (equation (5)) 

E l f i  
= 2n lo d o  a 2 F ( w )  = b~~ 

1 
X ( E ,  T = 0 )  

1 r Flh 
1 -I  - 

= 2n 1 d o  a 2 F ( w )  = b~~ 
0 

X ( E ,  T = 0 )  

Here (u2F(w) is the Eliashberg function, which for low energies may be approximated 
by a quadratic energy dependence. The coefficient b depends on crystal direction. 
Thus using the effects of TEF it is possible to measure the anisotropy in this coefficient. 
This is a great advantage of this method compared with the normal point-contact 
spectroscopy in which an average is taken over all possible crystal directions. Figure 
18 shows the measured TEF signal as a function of applied emitter voltage for an 
experiment on the (1 0 0) surface of Ag with the magnetic field pointing along the 
[00 11 direction. Clearly visible is the decrease in signal when the electron energy is 
increased due to the increasing scattering rate 1/z of the electrons along their path. 
At higher voltages a background signal arises with even a second maximum at 
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Figure 18. Measured AC collector voltage as a function of applied emitter voltage for a 
TEF experiment on the (1 00) surface of Ag with the magnetic field in the [00 11 direction, 
showing the decrease of signal at increasing emitter voltage due to an increase of scattering 
of the electrons along their trajectory. The broken curve is the theoretical TEF signal, 
calculated with equations (24) and ( 2 5 ) .  

approximately 12 mV. The background can be ascribed to electrons which scatter 
close to the emitter into the direction of the focusing orbit. The maximum at about 
12 mV coincides approximately with the maximum which is observed in traditional 
point-contact spectra. The broken curve in figure 18 is the calculated voltage depen- 
dence of the TEF signal, using equations (24) and (25) with b as fitting parameter. By 
measuring the focusing signal at different crystal orientations, van Son et al (1987) 
investigated the anisotropy in the electron-phonon scattering. 

7.4. Noise in point contacts 

Because of the small dimensions of point contacts, l / f  noise is the dominant type of 
noise observed for frequencies up to a few kilohertz. According to Hooge’s empirical 
formula for the power density of this noise ( S ,  = aV2/Nf  (Hooge and Hoppenbrouwers 
1969), where a is a constant and N is the total number of charge carriers), this l / f  
noise becomes more important when the number of charge carriers in the fluctuating 
system is decreased, for instance in semiconducting systems or in systems with very 
small dimensions, e.g. point contacts. For a contact the total number of charge carriers 
is given by the product of the electron density n and the contact volume a3. 

Measurements on Na, Cu and Ni indeed show this quadratic voltage dependence 
for contacts in the dirty limit (Akimenko et a1 1984b) at low voltages. For higher 
voltages deviations occur. Also contacts in the ballistic regime exhibit noise spectra 
which correspond well with Hooge’s formula. However, in these spectra, an additional 
structure is observed in the voltage range of the phonon frequencies. The noise spectra 
reveal features, not always exactly reproducible, but much sharper and more detailed 
than in the usual point-contact spectra. A correlation of the maxima and minima in 
the spectra is found with specific umklapp and normal scattering processes in the 
electron-phonon interaction. 
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7.5. Generation of phonons with metallic point contacts and their detection 

In § 3.1 we discussed the background that is often present in the measured phonon 
spectra. An explanation for this background is the existence of non-equilibrium 
phonons in the systems and subsequent additional scattering of conduction electrons 
with these non-equilibrium phonons. Thus in the case of ballistic contacts, we have 
both electron and phonon systems that are not in equilibrium. So far most experiments 
on point contacts have dealt with the non-equilibrium electron distribution which is 
the reason for most electrical and thermal non-linearities. Recently some experiments 
have been performed in which the generated phonon system was studied. A bottleneck 
in all these experiments is the fact that the phonons which are generated by the point 
contact have to travel through a metal film and pass the boundary between this metal 
film and an insulator or semiconductor in which detection takes place. In this transport 
of phonons from the contact area, extra scattering of these phonons can take place, 
resulting in possible thermalisation of the phonon system. Thus both film thickness 
and boundary have to be controlled very carefully in the experiments. 

The non-equilibrium phonon distribution for a ballistic point contact is given by 
(Jansen et a1 1980) 

0.32[(eV - €)/E] all,(€) ( E  G eV) 

( E  eV) 
N ( E ,  eV) = 

where I&&) is the energy-dependent phonon mean free path and V is the applied bias 
voltage over the contact. A striking feature of this phonon distribution is the cut-off 
at a phonon energy E = eV. In the case of a normal heater or whenever the phonon 
system is thermalised, one has a Bose distribution of phonons which is then given by 

This distribution still has a non-zero value for high phonon energies, i.e. up to the 
Debye energy. In general the temperature T in such a thermal phonon distribution 
depends on the applied voltage V.  For instance in the case of a point contact in the 
dirty regime this dependence is just given by equation (8). 

In an experiment by Goossens et al(1984) the phonon distribution in a point-contact 
configuration was studied using a fluorescence experiment in ruby. By measuring the 
R2 fluorescence, ruby can be used as a detector that is sensitive to phonons with an 
energy of 3.6 meV. The phonons were generated in a point contact which was made 
between a Au whisker and a Au film, evaporated on the ruby. The phonon detection 
was not sensitive enough to detect any signal around an applied voltage of 3.6 mV, 
where a threshold in the detected signal was expected. For higher applied voltages it 
was concluded that the point contact acts as a Planck radiator ( P  cc T&). 

In another experiment an attempt was made to distinguish between the non- 
equilibrium distribution (equation (26)) and the thermal phonon distribution (equation 
(27)). Here a thin gold film of 40nm thickness was evaporated on a silicon crystal 
with thickness 3 mm, which was doped with boron impurities. These boron impurities 
supply a phonon detection mechanism. By illumination with visible light, one creates 
electron-hole pairs in the silicon. The boron impurities can bind such a hole, forming 
a B+ impurity with an ionisation energy of 2.0 meV. Phonons with an energy larger 
than this ionisation energy neutralise the acceptors, yielding extra holes in the valence 
band of the Si and hence increasing its conductivity. A more detailed description of 
the B-doped Si as a phonon detector can be found in publications by Burger and 
Lassmann (1984, 1986). 

N(E, T )  = [exp(E/kgT) - I]-'. (27) 
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Figure 19. Measured phonon-induced conductivity signal in Si with a Au point contact 
(upper full curve) and a A u  film (lower full curve) as phonon generator, as a function of 
applied bias voltage over the generator. The point contact was made between a Au whisker 
and a Au film, evaporated on the Si crystal. The broken curves are calculated signals using 
the heater model (upper broken curve) and a ballistic-contact model (lower broken curve), 

In the evaporated gold film, phonons were generated with a point contact. After 
travelling through the Au-Si interface and through the Si sample, these phonons were 
detected with phonon-induced conduction at the opposite side of the Si sample. Figure 
19 gives an example of the detected signal as a function of bias voltage over the point 
contact. 

Assuming that the observed conduction enhancement is directly proportional to 
the number of phonons present in the Si, one can write for the measured signal 

d 
d V  

Ifdet -IED N ( E ) F ( E )  dE.  

E C  

Here E, is the threshold energy above which the phonons give a contribution, i.e. it 
is the ionisation energy of the B+ impurities (2 meV), is the Debye energy, N ( E )  
is the phonon distribution function and F(E)  is the phonon density of states, which in 
the Debye approximation is F ( E )  E ~ .  The voltage derivative in equation (28) appears 
because the measurements were performed with a lock-in technique. 

In figure 19 this calculated signal is represented by the broken curves using the 
phonon distribution of a heater (upper broken curve) and of a ballistic contact (lower 
broken curve). Although the two broken curves are very similar, the derivative signal 
d V,,,/dV, which was also measured, is better described with the thermalised phonon 
distribution of a heater. For this heater model, the heater temperature was related to 
the applied voltage as for a Planck radiator, i.e. T4 = Tiath + a2V2,  where a is given 
by the matching for the phonons between the heater (i.e. the hot spot in the Au film) 
and the Si crystal (Weis 1969, Rosch and Weis 1977). In the same figure also the 
measured signal is drawn for the case where the Au film was used as a uniform heater. 

Assuming that the point contact acts as a heater, the factor a which links tem- 
perature with voltage can be obtained by comparing the measured signals with the 
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calculated ones. The theory for the matching between a Au film and a Si crystal 
predicts a value of ct according to a4AR = 6.3 X K4 m2 s J-’, in which A is the 
area of the hot surface and R the heater resistance. Applying this to the experimental 
results of the point contact, one finds a hot area of -200 x 200 pm2, much larger than 
one would expect by comparison with the contact diameter (-10 nm) or the inelastic 
electron mean free path (-1 pm). 

From the experiments it can be concluded that a threshold at eV= E, is not 
observed. Besides, the measured signals are very well described with a heater model; 
however, this leads to an unexpectedly large hot area. That a ‘ballistic’ phonon 
distribution is not observed is probably due to acoustic mismatch between the gold 
film and the silicon, preventing most of the phonons from entering the crystal. 
Therefore most likely a thermalisation of the phonon system takes place, leading to 
a ‘normal heater’ phonon distribution. 

8. Concluding remarks 

Nowadays, in most more or less simple metals, metallic point contacts can be used as 
a standard technique for the spectroscopic investigation of the energy-dependent 
inelastic scattering of electrons in the metal. In particular, the electron-phonon 
interaction has been studied in detail in very many metals with the point-contact 
technique, and quantitative comparisons have been made with other experimental 
techniques (e.g. inelastic neutron scattering) and theoretical band-structure cal- 
culations for the determination of the strength of the interaction for the different 
phonon branches. Point-contact spectroscopy can be applied for the study of the 
interaction of the electrons with other excitations in a metal as well (e.g. magnons, 
paramagnetic impurities, crystal-field levels, etc.), but again the technique seems to 
be limited at present to more or less simple metals. The essential restriction in the use 
of point contacts as a spectroscopic tool is given by the condition that the contact 
diameter (typically 10 nm) has to be smaller than the energy-dependent scattering 
length I,(eV). This inelastic length has to be seen as the relaxation length for a non- 
equilibrium electron with energy eV above the Fermi level in a cold environment with 
the same temperature as the surrounding bath. As a direct consequence of this 
dimensional condition, the relative resistance change AR( V)/K of the voltage-depen- 
dent contact resistance has to be smaller than unity in a point-contact experiment in 
order to give reliable spectroscopy information, because AR( V ) / R  -- a/l,(eV). This 
relation holds for both the ballistic and diffusive regimes. Most unfortunately, in non- 
simple but interesting and fascinating metals (valence fluctuators, heavy-fermion 
systems, etc.), this relation is not always fulfilled; therefore, the analysis of point- 
contact experiments with these metals is far from straightforward and unambiguous. 
More work has to be done until these problems are solved satisfactorily. 

More elaborate configurations of point-contact experiments allow the study of all 
sorts of transport problems in metals. With a double-point-contact set-up, electron- 
focusing experiments allow the study of the inelastic scattering of electrons along 
specific orbits in single crystals selected by a magnetic field. The influence of various 
parameters (magnetic field, temperature gradients) in a point-contact experiment leads 
to particular phenomena (diffraction of electron wavefunction at a small constriction, 
quenching of phonon drag at a small contact). Several properties (electrical noise, 
video response, phonon generation) of a point contact with small dimensions are 
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related to interesting aspects in surprisingly many subfields of solid-state physics (origin 
of l/f noise, timescale of scattering processes, non-equilibrium distributions). The 
recent discovery of ballistic transport through point contacts in two-dimensional 
systems (van Wees et a1 1988, Wharam et a1 1988), where the quasi-classical approach 
of the Boltzmann equation is no longer valid, and the advances in the techniques of 
the scanning tunnelling microscope seem to open entirely new avenues for point- 
contact spectroscopy. 
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